Question	Answer	Marks	Guidance
1	 Any <u>one</u> from: Mass obtained using a balance / scales Weight / load obtained using a newtonmeter / spring balance Distance / height obtained using a ruler / metre stick / measuring tape 	B1	
	Time obtained using a clock / (stop)watch / timer or light- gate <u>and</u> timer or light-gate <u>and</u> data-logger	B1	The term clock / (stop)watch / timer /data-logger must be spelled correctly to gain this mark
	(output power =) 'mass \times <i>g</i> \times distance'/time or 'weight \times distance/time' or 'weight \times speed'	B1	Allow symbols, e.g <i>mgh/t</i> , <i>Wh/t</i> and <i>Wv</i>
	input power = output power/0.15	B1	
	Total	4	

Qu	Question		Expected Answers	Marks	Additional Guidance
2	a				Must use tick or cross on Scoris to show if the mark is awarded
			Measurements: height (of wall) time (of fall) Instruments: ruler / tape (measure) stopwatch / timer / clock /video $g = \frac{2s}{t^2}$ / $g = 2 \times$ gradient of $s - t^2$ graph Note: Allow full credit if candidate has used alternative approaches using $v^2 = u^2 + 2as$ or	B1 B1 B1 B1 B1	Allow: 'distance (of fall)' instead of 'height' The 4 th B1 can only be scored if stopwatch / timer / clock / video (camera) is spelled correctly Allow: Use of 'a' instead of 'g' Note: a must be the subject
			 v = u + at. Any two from: g is an estimate because air resistance / drag ignored parallax problems with 'landing time' starting / stopping the clock 	B1×2	Allow: 'wind resistance'/'resistive force' for first bullet point Allow: 'reaction time' but not 'human error' for the third bullet point
	b	i	Radio (waves) / microwaves	B1	
		ii	Time taken for the signal to travel from satellite to car is determined / 'delay' time for signal is determined	M1	Allow: speed of light $(2.0 \times 10^8 \text{ m s}^{-1} \text{ instead of s})$
			distance = $c \times (deray)$ time	AI	Note: Distance must be the subject for the second B1 mark

Question		on	Expected Answers	Marks	Additional Guidance
		iii	Mention of circles / spheres / shells The position of the car is where the circles intersect / trilateration mentioned	B1 B1	 Note: This mark can be scored if a diagram shows circles / arcs (no label required) Note: This mark can be scored on a diagram if it shows intersecting circles / arcs and the intersection point is marked 'car'
			Total	12	

Quest	tion	Answer	Marks	Guidance
3		 Diagram showing Oil in (insulated) container Electrical heater <u>fully immersed in oil</u> <u>Thermometer / Temperature sensor</u> Electrical circuit Ammeter in series , voltmeter in parallel with heater / joulemeter in parallel with heater Power supply /+ & - signs marked on wires 	B1 B1	 Not: oven or hotplate Allow: 'Fully immersed' seen in the body of text Thermometer /Temperature sensor must be spelled correctly on diagram All elements should be shown to score these diagram marks. Ignore appropriate additional items Connections to heater should be clear.
		Measurements• Measure mass of oil /use known mass of oil,• Measure change in temperature / initial and final temperatures• Measure current, pd and (fixed) time / energyCalculationInput Energy = $E = Pt = VIt$ and $c = \frac{E}{m\Delta g}$	B1 B1	Must have all elements. Allow: Use of symbols Allow: Take energy reading from joulemeter Not: use given power rating of heater Input energy must be consistent with equipment used. c must be the subject of the equation and temperature rise
		 Uncertainties Any two together with minimising action. Heat losses (make Δ𝔅 uncertain) - minimise by using initial 𝔅 below and final 𝔅 same amount above, room temperature Temperature varies throughout oil - minimise by stirring before taking temperature readings Some energy is required to raise temperature of the container / heater (etc) - allow by including in calculation. Temperature will continue to rise after heater is turned off – find max temperature. 	2 x B1	 (Δ9 or 9₂ - 9₁) must be clear. Allow: Draw graph of temperature against time c = VI / [gradient x mass] These points may be scored in the description of method. No credit for other uncertainties including heat lost to surroundings
		I OTAI	6	

Q4	Expected Answers	Marks	Additional guidance
(a)(i)	Force/acceleration is proportional to displacement (from equilibrium	B1	Allow force/acceleration is in opposite
	position)		direction to the displacement.
			Allow acc $\propto x$, provided x is identified as the
			displacement for 1 st mark.
	(Resultant force) force/acceleration is (always) towards equilibrium	B1	2 nd mark only scored if –ve sign used and
	position (WTTE, e.g. allow fixed point).		explained.
(a)(ii)	True;	B2	-1 for each error stop at zero
	False		Assume ✓ means true and X means false
	False;		Do not credit blank spaces
	False		
(b)	Measurements:		Allow ruler used to measure initial and
	angle measured with protractor stated or shown on the diagram	B1	subsequent displacement/amplitude if
	ston watch montimer/data langer to measure time stated or shown on		explained.
	stop-watch/ms timer/data-logger to measure time stated of shown on	D1	
		Ы	
	Conclusion: compare periods for different angles stated/implied		
	OR plot period against angle	B1	Allow table of results with correct column
			headings i.e. at least angle and period
	maior difficulty:		
	angle of swing decreases during the timing of the swing		
	solution: e.g.	M1	
	measure time for $\frac{1}{4}$, $\frac{1}{2}$ or 1 swing accurately (using electronic		
	timer/datalogger)	A1	Do not allow 'time is short so measure nT
	OR		and divide by n to reduce (%) error'.(WTTE)
	use data logger with motion sensor to record many swings and analyse		
	how the period changes over time		
	OR		
	video the motion with onscreen timer and analyse		
	Total	9	

Question	Expected Answers	Marks	Additional guidance	
5 (a)	 Any <u>four</u> from 1 to 5: 1. Most of the alpha particles went straight through (some deviated through small angles) 2. Hence most of the atom is empty space 3. Some / a very small number of alpha particles were scattered / repelled through large angles / angles more than 90° 4. This showed the existence of (a tiny) positive nucleus 5. The size of the nucleus is about 10⁻¹⁴ m 	B1×4	Must use ticks on Scoris to show where the marks are awarded Allow: 10 ⁻¹⁵ m	
	Reference ward a mark for one conclusion correctly linked to an observation	B1		
(b)	Any <u>five</u> from: Gravitational (force) This force is attractive AND is long-ranged / obeys '1/ r^2 relationship' <u>Strong</u> (nuclear force/interaction) This force is attractive (at larger distances) or repulsive at short distances AND is short-ranged / ~ 10 ⁻¹⁴ m Electrostatic / electrical (force) / coulomb (force) This force is repulsive between protons / zero between neutrons / zero between protons and neutrons AND is long-ranged / obeys '1/ r^2 relationship'	M1 A1 M1 A1 M1 A1	Allow: gravity Note: Do not allow 'inverse square law'; allow 'inverse square law with distance' Allow: Electromagnetic (interaction/force)	

Question	Expected Answers	Marks	Additional guidance
(c) (i)	mass = $235 \times 1.7 \times 10^{-27}$ (= 3.995×10^{-25} kg) volume = $\frac{4}{3}\pi \times (8.8 \times 10^{-15})^3$ (= 2.855×10^{-42} m ³)	C1 C1	Allow: 1.66 × 10 ⁻²⁷ kg for mass of nucleon
	density = mass/volume density = 1.4×10^{17} (kg m ⁻³)	A1	Allow: 10^{17} (kg m ⁻³) for this estimation question Note: Omitting 235 gives 6.0×10^{14} (kg m ⁻³), allow 2 mark Allow: 1 mark if 92 or 143 is used to determine the mass of the nucleus; this gives a density value of 5.5×10^{16} (kg m ⁻³) and 8.5×10^{16} (kg m ⁻³) respectively
(ii)	The nucleons / neutrons and protons are packed together with little or no empty space (AW)	B1	
	Total	14	

Q	Question		Answer	Marks	Guidance
6	(a)		Obtain a set of readings for: mass <i>m</i> , time period AND calculate frequency using $\underline{f} = \underline{1/T}$. Plot graphs of <i>f</i> against $1/m$ AND <i>f</i> against $1/\sqrt{m}$ The graph which is a straight line through the origin provides the correct relationship Reference to one method of improving reliability eg counting more than 5 oscillations to find <i>T</i> or <i>f</i> taking repeat measurements of <i>T</i> or <i>f</i> (and average values) time oscillations from equilibrium position	B1 B1 B1 B1	Not number of oscillations in a set time Allow: product method using two or more points (B1) Select the relation which gives a constant product (B1) Allow: plot ln <i>f</i> against ln <i>m</i> (B1) gradient= -1 then $f \propto 1/m$ or gradient= -0.5 then $f \propto 1/\sqrt{m}$ (B1)
	(b)	(i)	$v_{\text{max}} = 2 \pi f A = 2 \pi \left(\frac{1}{1.2}\right) \times 36 \times 10^{-3}$ $v_{\text{max}} = \frac{3\pi}{50} \qquad (= 0.188)$ $KE_{\text{max}} = \frac{1}{2} \times 0.4 \times \left(\frac{3\pi}{50}\right)^{2}$ $KE_{\text{max}} = 7.1 \times 10^{-3} (J)$	C1 C1 A1	Note: mark is for substitution
		(ii)	$a_{\text{max}} = (2 \pi f)^2 A = \left[2 \pi \left(\frac{1}{1.2} \right) \right]^2 \times 36 \times 10^{-3}$ $a_{\text{max}} = 0.99 \text{ (ms}^{-2})$	C1 A1	Note: mark is for correct substitution

Question	Answer	Marks	Guidance
(c)	Reference to : kinetic energy (of masses and spring), gravitational potential energy (of mass and spring), elastic (potential) energy / strain energy of spring	B1	Note: mark to be awarded only if all 3 forms are quoted Note: potential must be spelled correctly throughout to score this mark
	KE: <u>zero</u> (at lowest point), increasing to max at equilibrium point, decreasing to <u>zero</u> (at highest point)	B1	
	GPE: increases (as masses rise from lowest to highest point) (clearly worded ora)(AW)	B1	
	strain / elastic energy: decreases (as masses rise from lowest to highest point) (clearly worded ora) (AW)	2	
	Total	13	